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Poisson Functionals of Markov Processes
and Queueing Networks

by

Richard F. Serfozo
University of North Carolina at Chapel lill

and

Georgia Institute of Technology

ABSTRACT

We present conditions under which a point process of certain jump

times of a Markov process is a Poisson process. One result is that if

the Markov process is stationary and the compensator of the point process

in reverse time has a constant intensity a. then the point process is

Poisson with rate a. A classical example is that the output flow from a

M/M/1 queueing system is Poisson. We also present similar Poisson

characterizations of more general marked point process functionals of a

Markov process. These results yield easy-to-use criteria for a

collection of such processes to be multi-variate Poisson or marked

Poisson with a specified dependence or independence. We give several

applications to queueing systems, and indicate how our results extend to

iunctionals of non-Markovian processes.

Keywords and phrases: Poisson process. multivariate compound Poisson

process, functionals of Markov processes. queueing networks, time

reversal.
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I. Introduction

There are a variety of point processes associated with the jump

times of a Markov process. For instance, in a Markovian network of

queues, one might be interested in the point process of times at which

units move between two sectors of the network. More generally, if the

network has synchronous movements of items, one might be interested in

the marked point process of the times at which batches of units move

between two sectors and the numbers of units in the batches (the batch

size being the "mark" of the time of the movement). One can formulate

such a point process as a functional of the Markov process representing

the network. The typical aim is to describe the behavior of the point

process in terms of the characteristic of the Markov process. Some

immediate questions in this regard are: Is such a point process Poisson

(or marked Poisson)? Is a collection of these point processes

multi-variate Poisson (or narked Poisson); and what are the dependencies.

if any, among them?

These are the issues this study addresses. We begin in bection 2 by

presenting conditions under which a point process of certain jump times

of a Markov process is a Poisson process. It is well kinown that a simple

point process on the real line is Poisson with rate a if its compensator

has the constant intensity a (Theorem 2.3(i)). We present a reverse-time --

version of this (Theorem 2.3(ii)). It says that if the Markov process is

stationary and the compensator of the point process in reverse time has

the constant intensity a. then the point process is Poisson with rate a. -=
d.:', tcnI

,v u!bi'ity t ,!es

* Avp0 -. 'cIj Or

S Out- 05



2

This is an easy-to-use criterion for establishing whether a point process

of jump times is Poisson. We also give necessary conditions for this

Poissonness. In Section 3, we present similar conditions under which

more general functionals of a pure jump Markov process are marked Poisson

processes. Some of our results overlap those of Melamed (19Y9), Br6auaud

(1981), Variaya and Walrand (1981). and Disney and Kiessler (19S7).

Melamed and Disney and Kiessler derive their results using a Markov

renewal argument and Brrmaud, Variaya and Walrand use a filtering

arggument. We use a simpler approach based on the notion of the time

reversibility of the compensator of a point process. This approach lays

bare the characteristics underlying the Poisson property, and it readily

extends to the more general settings in Sections 3-5.

The applications in this area have been primarily for queueing

systems. Burke (1956) and Reich (197) showed that, in a stationary

M/M/I queueing system, the output flow is a Poisson process with the same

rate as the Poisson input flow. Similarly, the exit flows from the

queues in a Jackson network are independent Poisson processes; this is

discussed in the references in the preceding paragraphs ;uia in Nelly

(1979). D)isney and K6nig (1985) and Whittle (1986). In Sectiors 2-4. we

* discuss applications identifying Poisson, compound Poisson and

multivariate-Poisson flows in single queues and in queueing networks with

dependent nodes. We end in Sect ion F) by indical itng how our results

extend to Karkov processes with general state spaces and to ifuntionals

of semi-Markovian processes.



2. Jump Times of a *krkov Process tLhat Form a Poisson Process

Let X = {XL: t E R} be a Markov process with a countable state space

I and transition rates

q(x.y) = lim P{X = y I X0 = x/t, x x y,t i0

and q(x.x) = 0. We indicate later how out results extend to a general

state space. We adopt the standard assumption that

q(x):= 2 q(x~y) < -, x E .1,

y

and that each sample path of X is right continuous and has a finite

number of jumps in any finite time period. Then the sojourn time of X in

-1
a state x is exponential with mean q(x) and. at the end of the sojourn,

X jumps to some state y with prolxibility q(xy)/q(x), yE:2. For

convenience, we assume that X is irreducible.

We shall study the point process N on R defined by

(2.1) N(A) = >: f(X t ,Xt)
tEA

where A is a Borel set in R and f: I x '1 -+ (0, 1} with f(xx) = 0, x E A.

The N(A) is the number of' jumps of X from some x to some y for which

f(x.y) = I in the time period A. Any such f is an indicator . &:, ion

f(x.y) = l((x.y) C S) of a subset S of I x I thait does not contain pairs

of identical values; the N(A) would then be the number of transitions of

X in the period A that take place in the transition set S. Clearly N(A)

is finite when A is botnded and it may be infinite when A is inbounded.

We shall frequently use the function

(2.2) a(x) = >, ((xy)f(xy), x ( I .

y

First note thatthe mean measure of N is
,.I

6
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-A1

(2.3) EN(A) AEa(Xt)dt

which is Levy's formula (see for instance Benveniste and Jacod (1973)).

When X is stationary, an easy check shows that N is stationiary (i.e. for

iny I..... A . the distribution of N(AI+t)..... N(A +t) is independent of

t). Consequently, EN(s,t] = a(t-s), s < t in R. where

(2.-t) a = EN(O,1] = : vr(x)q(xy)f(x.y)

x.y

and ir(x) = P{Xt=x} is the equilibrium (or stationary) distribution of X.

-IN~
Here 0 < a < -. Also. with probability one, t N(s.s+t] -a as t -.

One can use N to model a variety of event occurrences of X by

appropriate selections of f. For instance, suppose X takes values in

S= Zm. the r-dimensional vectors with nonnegative integer-valued

entries. Then N records the downward jumps of X when f(x.y) = I iff

x X y and x. > yj, j=l.....m. Similarly. N records the jumps of X atJ- -

which the raximum component does not change when 1'(x.y) = I ift'f x y and

Mnax x5 = max y..1. . .

We shal ! investigate conditions tnder which N is a Poisson process.

We say that the future of N is independent of the Ixist of X,.d oted

N+ IL X- . if- {N(A): A C [t,-)} is independent of {Xu: u < i), t E R.

(XU : u < t} can be replaced simply by X since X is Markovian).

Similarly. N_ 1I X+ denotes that the past of N is independent of the

future of X. Ojr first result is that these conditions are sufficient

for N to be a Poisson process; the N might be a non-statiotulry Poisson

process. We write "N is 'P(a)- to mean ttt N is i slationiryV

'L o
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(time-homogeneous) Poisson process with rate a. The degenerate case a =

0 corresponds to N = 0; the case a = is not possible.

Theorem 2.1. If N +I X__ or N -11 X . then N is a Poisson process. In
+ 

+

this case. N is gh(a) if and only if Ea(X d = a, It E R.

Proof. The N is a Poisson process if it is simple (i.e.. N({t}) = 0 or

1. t C R), it has no fixed atoms and has independent increments (i.e.,

N(AI) .... N(An) are independent for disjoint A ... .A ); see p. f58 of

Kallenberg (1983). Since the probability is zero that X has a jump at

any specified time, it follows that N is simple with no fixed atoms. Now

suppose N L X_. Then, for any s < t in R,
+

P{N(st] = n N(A) : A C (--ws])

,." = E[P{N(s.t] = n X r < s}] = P(N(st] = n}.
r

Thus N has independent increments and hence N is Poisson. This

conclusion also follows when N_-L X+ sincep+
P(N(s.t] n jN(A) : c [t )}

= E[PJN(s.t] = n X : u > t)] = PIN(st] = n).u

I'he second assertion on the stat lonarity of' N follows from (2.3).C]

Reunrk 2.2. From the proof, it is clear that the first assertion of

St. Theorem 2.1 is true for amy pure jump stochastic process X; the Markovian

property is used only for the second assertion. Also. both assertions

'ire true when X is a Markov process that is not time homoigeneotis (its

transition rates are time dependent). Melamed (19Y9) showed tlut N + X_

implies that N is Poisson. his argument relies on the property tf tt X and

J(N(s,t]. Xt): t > s) are Markovian.

r* F ' 11 11



We now discuss conditions on the parameters of the Markov process X

under which N is 'P,(a). When X is stationary with equilibrium

distribution iT. we shail frequently use the function

(2.5) a * (x) = ir(x) - I  ir(y)q(y,x)f(y.x). x C 1.

y

Theorem 2.3. (i) If (I(x) = a. x C I. then N IL arid N is P(a). (ii)

If X is stationary with equilibrium distribution V. iuid a (x) = a. x E .

then N_ 1 L X and N is P(a).

Proof. Assertion (i) is a special case of Theorem 18.9 in Liptser and

Shiryayev (19YS) (or Theorem I5 in Bremaud (1981)). which says that a

simple point process on R is !'(a) if its compensator has the non-random

intensity a. In our setting, for each s C R. the process

(2.6) Mt  N(ss + - s+t a(X )du

is an 5t-martingale, where t = CJ(X s < u < s + t); the process

At = js+t a(Xu)d u is the compensator of N(s. s + t] and a,(X )is thess th

intensity of this compensator'.

To prove assertion (ii), consider the process Xt = X t C R, wheret -t

X = Xt- The X* is the right-continuous time-reversal of X. Each

sample path of X is the same as a sample xath of X traversed in the

opposite direction, and vice versa. Since X is statiorary, it follows

that X is an irreducible, stationary Markov process and its transition

rates are

q * (x.y) = v(x)- nr(y)q(y-x). x,y C .

9 Define the point process N on R by

N (A) = I1 [f(X, , Xt)

tCA
where fw(x~y) = f(y~x), x~y C t'. Clearly N (A) = N(-A), for each A. and

01
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so N is the time-reversal of N. Consequently, N is '(a) if and only if

N is P(a).

Now observe that a (x) = q *(xy)f*(x.y). That is. a is the

y
*, *. -napiaino ) to X*

function a for the processes X N Then an application of (i) to X ,N

says that N* IL and N* is :P(a). But these stallements are eqivalent to

the respective statements that N_ II X+ arid N is P(a). since X N are

the time reversals of XN.,

Remarks. (I) In Theorem 2.3, statement (i) is the well-known

property of Markov processes that N is '/P(a) if the intensity u(X t) of N's

compensator equals the constant a. Statement (ii) is simply a reversed

time version of (i): it is (i) in terms of X and N viewed in reverse

time. [he a is the reversed Iime version of (Y in tie sense that a )*(X

is the intensity of the compensator of N i n reverse time. Also, N_ I X

in (ii) is the time reversal of N+ X in (i). (2) Note that the

process X in (i) may be transient, recurrent or non-stationary; but in

(ii), X must be stationary. (3) In consulting the references for

Theorem 2.3(i). one can see that this result is true for a non-Markovian

process X for which a: I + R + is a function such that the process M t in

(2.6) is an I t-martingale. Similarly, it follows that Theorem 2.3(ii) is~t

true for a non-Markovian process X if a : --+ R + is a funci "on such that.

for each sf.R.

N[s-ts) - a(X )du

is an t-martingale where' = (J(X U: s-t < u1 < s).



In applications, the Poisson property of N due to a(x) = a, x E A,

is usually foreseen, while the Poisson property of N due to a (x) = a, x

E ., might not be anticipated. Here is an example.

ExatmIple 2.4. MI/MI and Batch Service Queues. Suppose the Markov process

X has the state space Z and transition rates

q(n.n + 1) = 1 C Z +-/, +

q(n,n - K) = in > K

q(n.O) = n < K

where A. pi and K are positive. This process represents the number of

customers in a queueing system in which customers arrive singly at the

rate A and are served in batches such that when n > K customers are in

the system, then batches of K customers depart at the rate ;: and when

n < K customers are present, then all of the customers depart at the rate

I'. When K = 1. this is the M/M/1 queueing system.

Implicit in the description of this queueing system, the point

process N of customer arrivals is :'P(A), regardless of whether X is

transient or recurrent. Indeed, this follows from Theorem 2.3 (i) since

* N is defined by (2.1) with f(n.n') = I iff n' = n + I ard

, a(n) = q(n,n')f(nn') = q(n,n + 1) = N.

Now, suppose that N denotes the point process of times at which

batches of size K depart from the system. This is defined by (2.1) with

f(n.n) = 1 iff ri' = n- K and n > K. In this case,

(n) = ((nn - K) l(n > K) = gl(n > K).

This depends on n, and so Theorem 2.3 (i) does not ensure that N is

Poisson. However, assume that X is stationary. Necessarily, A ( IiK and

the equilibrium distribution of X is

6W



rr(n) -- rnU - r), n1 > 0,

where r E (0,1) is the unique root of
, K+ 1

+lr - (X + Ip)r + ,\ = ()

(see Section 3.2 of' Gross and Iirris (19&5.)). (learly
*-1

a () 7r(n) T rr(n' )q (n' .n)f( ' ,n)
%., n

-= (n) I r(n + K)q(n + K.n)

Kp r = p + A(1 - l/r).

Thus. we conclude by Theorem 2.:3 (ii) that the process N is

-i + ( - i/r) ). One would probably not anticipate this result from

the descriptii of' the process, or even f'rom earlier work in this area.

For the special case in which X is the M/M/I queue, we have K = 1,

r = AI/i. and so N. which is the departure process, is 'P(N). Burke (19F6)

and Reich (1.,)7) were the first ones to prove this.

Example 2.5. Queues With Compound Poisson Arrivals and Poisson

Departures. Suppose the Markov process has the state space Z, and

transition rates

q(n. n + m) =A p (1 - p) m > 1, 1 ( Z+
n -+

q(n, n - 1) = p n n > I

where X nn are positive and 0 < p < 1. This process represents the

number of customers in a queueing system in which batches of customers

arrive at the rate X when n customers are present and the number ofn

customers in a batch has a geometric distribution with parameter p. The

customers depart at the rate 11 when n are in tie system. he

equilibrium distribution of X is

-I - n-I
r(n) = r(())X(0l 1  1 ' TI k + "1 ( ), > 1,

k=.

0 .1 1111
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provided the sum of these terms over n is finite, which we assume is true

(see Kook (1988)).

Suppose tit N is the point process of customer departures. This is

defined by (2.1) with f(nn') = 1 iff n' = n - 1. Clearly,

a (0) r() r( I )q( 1 .0) = A0

a (n) = (n)- Ir(n + I)q(n + Ln) = , + ppin" n n 1.n n

Thus, if X is stationary and = a u.d A + p = a, 1 > I then the

departure process N is ?P(a).

-4 We end this section with elaborations on Theorem 2.3 that establish

necessary conditions for N to be Poisson.

"Theorem 2.6. When X is recurrent, the following statements are

equivalent.

(i) N +11 X-_ and N is P(a).: +

(ii) a(x) = a, x E 1V.

(iii) N+ IL1X_ and EN(s,t] = a(t-s), s < t in R.

(iv) ECa(X t ) I Xs = x] = a, x E :1, s < t in R.

Proof. Theorem 2.3 ensures that (ii) implies (i). Clearly (i) implies

(iii). Now, if (iii) holds, then, for s < t in R.

a(t-s) = "N(s.t] = E[N(s.t] I X = x]

L E[a(X) I Xs=X]du

the last equality being L.6vy's formula. 'Taking the derivative of this

with respect to t yields (iv). Fitally, if equation (iv) holds, then

taking the derivative of it with respect to t and let t ing t I s, we

obtain

) (y)q(x.y)/q(x) = €(x) for each x.

y

.1
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This says that a is a harmonic function of the Markov matrix

{q(xy)/q(x)}. Now, this matrix is recurrent under the assumption that X

is recurrent. But we know (see for instance Section 7.2 of Cinlar

(1915)) that harmonic functions of irreducible, recurrent Markov chains

are constant This observation and equation (iv) imply (ii).E

Theorem 2.7. When X is stationary with equilibrium distribution ir, the

following statements are equivalent.

(i) N- IL X and N is '(a).

(ii) a*(x) = a, x E A.

(iii) N kX+ and EN(O.1] =a.

(iv) E[a*(X) X = x] = a. x E 1, s < t in R.

(v) a *(x) Y a(y)vr(y) a, x C

y
Proof. The equivalence of (i) - (iv) follows from Theorem 2.6 applied to

the reversed-time processes N X defined in the proof' of Theorem 2.3.

Furthermore. (v) obviously implies (ii). And (ii) implies (v) since N is

P(a) by (i) and by (2.4), we have

a = EN(O.l] = fl Ea(X )dt = ) a(y)vr(y).'0 t
"U y

Thus (i) - (v) are equivalent statements.o

Remark 2.8. Statement (v), relating a to a. is the "independence

condition" that is the focus of Melamed (1979), Br~maud (1981) and

Varaiya and Walrand (1981). Their main result, which is implicit in

Theorem 2.Y. is as follows: If X is s(ationary with equilibrium

distribution ir, then N_ 1L X+ if' and only if a (x) = Y a(y)r(y). x C .

I.hy

In this case. N is 1P(a) where a is the preceding sum.
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Although we are considering processes N and X defined on the entire

real line, our results herein also apply to such processes defined on any

time interval I in R. Indeed. consider the process extended to all of R

and then the results apply to these extended processes and hence to their

restrictions to I.

3. General Poisson Functionals of Markov Processes

We have been studying the point process N that records the times at

which the Markov process X jumps from some x to some y withI f(x.y) = 1.

We shall now study a more general point process that records additional

information at these jumps. Suppose that h is a function from I x I to

some space A'. Consider the marked point process M on R x V defined by

(3.1) M(AxB) = Y f(X _X t)l(h(X t,X ) C B)
tEA

where f is as above, A x B is in the a-field of R x 1' and I(- E B) is

the indicator function of B. This M is a functional of X that records

the "mark" h(X L- Xt) at each jump time t of X at which f(X t_,t) = 1. As

a point process, M is simple and M({t} x Vi) = 0 or 1, t E R. Also,

M(A x Vi) = N(A) records the times at which M records the marks.

In this section. we identify conditions on X under which M is

Poisson with EM((st] x B) = a(t-s)F(B). where a > 0 and F is a

probability measure on 1'. In this case, the process N of occurrence

times of the marks of M. is t(a), and each mrk has the distribution F.

9 We call such an M a mtrked Poisson process with rate a and mark

distribution F, and we simply say M is 't(a.F).

A.
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The approach we used in Section 2 for deriving Poisson characteri-

zations of N readily extends to yield imirked Poisson characterizations of

M. The following re,.ults are analogues of Theorems 2.1. 2.3 and 2.7; the

analogue of Theorem 2.6 can be seen from Theorem 3.3 and hence is not

displayed. ITheir proofs are omitted since they follow the same line of

reasoning as their counterparts in Section 2. Here we let

a(x.B) = 2 q(x.y)f(x.y)l(h(xy) C B)

y

a (x.B) = vr(x) - I I(y)q(y.x)f(yx)1(h(yx) E B).

y

Theorem 3.1. If M+ IL X_ or M-_L X+. then M is a Poisson process. In

this case. M is A1t(a.F) if and only if Ea(X t,B) = aF(B). for each t and

B.

Theorem 3.2. (i) If a(x,B) = aF(B), for each x and B, then M +1L X. and

M is AU'(aF). (ii) If a (x.B) = aF(B), for each x and B, then M- IL X+

and M is .M'(aF).

Theorem 3.3. When X is stationary with equilibrium distribution Vr. then

the following statements are equivalent.

(i) M_ A X and M is JP(a.F).

(ii) a*(xB) = aF(B). for each x and B.

(iii) MJ- IL X+ and EM((O,l] x B) = aF(B) for each x uid B.

(iv) E[a*(Xs.B) I Xt=x] = aF(B). for each x, It and s < t in R.

(v) a*(x.B) = 2 a(yB)vr(y) = aF(B), for each x and B.

y

Point processes of the form (3.1) are useful for representing

multivariate and compound point processes. Indeed. suppose one is

interested in the n-dimensional compound point process (M 1..... Mn)

defined by

IM



14

(3.2) M =(A) f (X _X t)h.(X t.X )
tEA )MjAt-

where h.: A x I -* R (or any other group). These processes contain theJ

same information as M defined in (3. 1) with 1' = Rn and

h(x.y) = (hl(X-y).. hn(xy)). More precisely, there is a one-to-one

correspondence between point processes M on R x Rn as in (3.1) and

n-dimensional compound point processes (M1 .... Mn) as in (3.2). Note

that M on R x Rn is .4t(a,F) if and only if its corresponding (M1 . ... M )

is an n-dimensional compound Poisson process with rate a and atom
n "

distribution F on R In this case,

P{Ml(s.t] E B1 .... Mn(s.t] C Bn}

= > Fk (B 1 x...xB )ak(( - s)k e-a(t-S)/k!.
k=O

And each M. is a compound Poisson process with rate a. = a(1-F.(0)) and

atom distribution F., where F ... F are the marginal distributions ofj n

F. Iere are some special cases:

Cl: M1 ... . M are independent compound Poisson processes with ratesn

a I.. a and atom distributions F ... Fn if and only if F = F X...XF n

C2: (M1 ..... Mn ) is an n-dimensional Poisson process with rate a and

point allocation distribution F on {0,1} n if and only if F has support on

() 1
n . In this case, each M. is ,P(a).

(3: M ..... M are independent Poisson processes with rates a I-- a if
I, n 1 n

and only if F has support on (C 1 ... e }, where e. is the jth unit vector
nj

with 1 in entry j and O's elsewhere.

Renrirk 3.4. Each of the preceding theorems hold for these cases Cl. C2,

C3 when the F in the theorem is as specified in the case of interest.

For instance, Theorem 3.2(ii) for case C3 reads: If a*{x,(e.}) = aj,0. j.



j=l.....m. and a (x.(z}) = 0 otherwise, x J 1, then (M1 ..... M) IL X+ and

M M are independent Poisson processes with respective ratesn

a a n.. . n "

An obvious application of Theorem 3.2(i) shows that the process of

customer arrivals in Example 2.5, when A A A, is a compound Poissonn
rn-I

process with rate X and geometric atom distribution p (1-p). The

following is an example of a not so obvious compound Poisson flow in a

queueing process.

Example 3.5. A Batch-Service Queueing System With Poisson Arrivals and

Compound Poisson Departures. Suppose the Markov process has the state

space Z+ and transition rates

q(OI) X A(l - p), q(n. n + 1) = A n > I,
q(n.n - m) = p-I p) < m < n. n > 1,

~n-i
q(n.0) =lip t > 1,

where X.li are positive and 0 < p < 1. This process represents the number

of customers in a queueing system in which customers arrive at the rate A

and are served in batches as follows. When there are customers in the

system. "buses" arrive at a rate p to take them immediately froin the

queue. Busing is a common practice in computer systems and natcrial

hIandling systems. The number of customers each bus can take i, 1 random

variable with the geometric distribution p m--(l-p), m ) 1. Also, when

there are no customers in the queue and a customer arrives, then with

probability p there is a bus available to take the customer without

delay. The equilibrium distribution of X is

V(n) = .(O)(l-p)Xn/(, + i) ,  n > 1.

provided X < p + pA, which we assume is true (see Kook (19S)).
.a
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Consider the compound point process

)(A) = : max{O, X -Xt_ }

tEA

that describes the total number of' departures in the time period A. It

records the times at which batches of customers dexart and the batch

sizes as well. This process corresponds to M in (3.1) with F(n,n') =

iff n' e n and

fIn - n n' <_ n
h(n,n')

n' > n

Clearly, for each n > 0 and m > 1

a *(n,{m ) = 7r(n) - I r(n')q(n',n)F(n'.n)l(h(n',n) = m)
n

= 7r(n)- Ir(n + m)q(n + mn)

= X (I - p)F({mf),

M-I
where F({m}) = r (1-r). m > 1. and r = pX/(p+pX). Thus, if X is

stationary, then Theorem 3.2(ii) implies that M is AOP(?.(1 - p).F). lence

D is a compound process with rate X(1 - p) and geometric atom

distribution F.

4. Poisson Flows in a Network of Queues

We shall consider a queueing network process defined as follows.

* Suppose that X(t) = (XI(t) .Xm(tL)). t C R. is a queueing network

process on m nodes, where Xj(t) denotes the number of units (i.e.

customers) at node j at time t. The process X takes on values

n = (n ..... n) in Z m . Let e. denote the jth unit vector in ' with I in+ .1 +

entry j and O's elsewhere. As in Whittle (1986). we assume that units

move among the m nodes such that X is a Markov process with tiansiLion

rates

) 7)



I t

(,1.1) q(n., + ek) = XOk

q(n.n - e. + e) c.CP(n - ej)/P(ri), n - ,
j k .1

q(n,n - e.) = A. 0o(n - e.)/O1(n), n.1 1

and q(nn') = 0 for all other states n'. Here ,P: /n - (0,w). the A's are

noitnegative, and the subscript 0 denotes the "outside" node. Under this

assumption, units enter the nodes 1 ... ,m by independent Poisson

processes with respective rates AO 1 -- A" Om" When X is in state n, then

V N Jk (P(n-e)/Oi(n) is the departure rate of' units from node J. The Xjk
k

is the "arc-dependent" routing intensity from node *j to node k. and

0(n-e )/(P(n) is the "system-dependent" departure intensity from node j

(the ratio representing the potential difference between the system in

state n and in state n-e. with one less customer at node j).

We shall assume that X is irreducible. This is equivalent to the

irreducibility of the Markov routing matrix

m
(4.2) p(.jk) = Xj / ." j.k = ).....m,

where AO0 = 0. The irreducibility of this maitrix is equivalent to the

existence of unique positive numbers w ..... w that satisl'y
in

m
(4.3) ) (w1 Ak - WkAk) = . .= ()j. m.

k __4
* m n.

where w0 = 1. We also assume that > '(n) TT w * is finite. Then X is
n , i= 1

positive recurrent and has the equilibrium dist ribut ion (p.198 of Whittle

(1986))

m t. m

(4.4) n(n) = c4,(n) IT w.n ( Z
. 1~

where c is the normlizin consta.nit. Ilereal'Ier, we assume t hat X is

stat iorn'iry.
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Now. consider the point process

N 0()oA) > l(X(t) = X(t-) - e
ttA

that represents the times at which units exit the network from node ,j.

Of course. NjO = 0 when NjO = 0.

Theorem 4.1. The exit processes N ...... NM are independent Poisson

processes with rates wIX 10 . ... W m .X am d (N 1 0 .. Nmo) IL X+ .

Whittle (1986) on p. 2)Y proved this by esrablishing that the

reverse time process X of X is again a queueing network process and the

exit processes of X are *ust the time reversals of the Poisson input

processes of X . Theorem '4.1 also follows from Theorem 3.2(ii) and

Reacirk 3.4 since, for each n and j.

a (n,{e.}) = 1(n) Y(n + e.)q(n + e.n) = w
j~ j0

and a (n.z}) = 0 elsewhere.

Along with these exit processes, consider the point processes

N jk(A) = "  l(X(t) = X(t-) - ej + ek)
tf A

of times at which units move from node .j to node k. We shall now

identify sets J C {l. m} and K C (0 1... m} such that Nik. .jeJ, keK

are independent Poisson processes. Suppose that j and K satisfy the

following assumptions:

Al: Each unit that exits .1 can never" return to ,J. (To verify this one

need only check the possible roti ig under X jk)

A2: The system-dependent dejxirture intensity for each nodte j I is of the

form

nl n - e. j)/0(n) = P.I(n. - ei )/0l(n1 )

where n.= (n : J). and *, is a posit ive function on such vectors.Ij



A3: K is the largest subset of (0. I1..... m sch ,that each uii t in K

cainnot enter j on a subsequjent move. (Note Othat 0 C K arid

J 0 K = (j E J: xi 0. p c .}.

For some networks, ,1 = . m} tmay be the only set of' nodes that

satisfies Al. At the other extreme are tietworks in which each node is

visited at most once by a unit, and so each stlbset of nodes Satisfies Al.

Assumption A2 is equivalent to being able to factor (i as

N n) = (PJ(nJ)%P(nk : k¢.1). Upon selecting ,j conforming to Al. A2. it is

advantageoIs to select K as large as possible as we did in A3.

Le t Xj() = iX.(t):jtj}. tuR. denote the process X on the nodes J

aid let .J denote its state space.

Theorem 4.2. 'he processes N jk, j{,. k(K. are independent Poisson

processes with respective rates wAk. jt.l, kt-K. Fiurthermore.
J. ,

Nik: jtj k K}_ 1L. (X j +

Proof. Under the assumptions, the X is a qILeuCing network process on

the nodes .j with tranisition rates q (n .n) defined as in (,!.1) with the

last line replaced by

qj(n.n - ej) = A n - e )/(P((n ) ,  n. 1. n(,.

where A. X . kurthermore. Xj has the equilibrium distribution

frrj0) = c jbj(n) T a.' , tFII
. , it . '

']This is just the sum of Yr(n) in (-.-) over all n . P¢.J. Thus, from

Theorem '1. 1. we know thait X j*s exit processes N = Y N ,j,.J, are
j ktK jk'

itdepxendent Poisson processes with reslxctive rates w.A.. ,j(,J. and that
( J

(NIL(
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Next, observe that for each j f . the processes Njk. k t K, form a

pa rtition of N. in which each point of N. is assitgned to the subprocess

N with probability Xk/A.. independent of everything else. Conse-
Ajk w kj

quently, Njk. k F K. are independent Poisson processes with respective

rates (Xk/A.) (wA.) = w.X keK (see for instance p.S9 of Cinlar
ik .i .1 i jk'

(1975)). This property and the preceding argument yield the assertions.O

Example 4.3. Suppose the network has a node j such that each unit

passing through the network visits j at most once. Also, assume that

0(n) = (P.(n )%P(nk:k e j). and let J = (j}. Then the departure processes

N jONjI..... Njm are independent Poisson processes as in Theorem 4.2.

" Now, suppose that each node of the network can be visited at most once by

each unit and (n) = P1(n1 )...Pm(n m). Then each process Njk is .P(w ? k);

some of these processes may be dependent. Consider the arrival processes

to a fixed node k. Lei ,1 denote the set of all nodes j that can never be

reached from k. Then, under the preceding supposition, the arrival

processes Njk. jeJ, are independent Poisson processes as in llituut:i, .1.2.

Fxample 4.4. Multivariate Poisson Flows. Suppose J ...... , are subsets

of {l...m} and K ... K are subsets of (0,1.....m} (the subsets need

not be disjoint). Consider the process N. : Njk of times at whtich
pt jJ.J

~kcK.
10osoe e inK. ups est

units move from some node in J to some node i "n K. Suppose he Sets

J = J1 U. . .Uj and K = KI U. . .UK satisfy assumptions Al, A2. Al. or that

they are contained in a pair ot' such sets. 'Ilen Nik. ,jtj, k(K, are

independent Poisson processes as in Theorem -1.2. Consequent ly.

(N I.... N) is a v-dimensional Poisson process with rate a = wjAjk andlJJ .i J
Sk. K

point allocation distribution
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' -} a 1  I

i I ,j k w j \ jk

where I C {1..}. and the sum is over all j in H ,J.. and k in C1 K..hA1 1i C I if

The N . . tN are independent if H JI = i and I K. = ,P.
1 i

Example 4.5. Networks With Several Types of Units. Consider a network as

above in which each unit carries a label from a fitite set 4 of types and

the label may change when the unit moves. We represent this network by

the process X(t) = (X .j(t): a&4. j=l....m}. tcR, where X aj(t) is the

number of type a units at node ,j at time t. A typical state of X is
n = (n: aa, j=l . i.n. m). We assume that X is a Markov process with

transition rates (analogous to (4.1))

•q(n.n + ebk) = XObk

q(nn - ea j + ebk) = Naj.bk O(n - eaj)/P(n) ,  n. _> 1.

q(n.n - eaj ) = xaPj,O O(n - e aj)/P(n) ,  nJ > 1.

Under assumptions as above, the process X has the equilibrium

distribution

naj
(n) = cr(n) fT w aj

aj

The results above hold for this network - one need only use double

indices aj. bk in place of *jk and consider the point processes

Naj bk.aj u J. bk c K. where J, K satisfy assumptions Al, A2. A3 with

double indices. For i ns tance. suppose A C :4 is such ttt a un it with a

label from A\A can never carry a label from A. Consider the point

processes of t imes at whiichli init change labels frtom A to *.AA. These

processes are N aj,1.k a4j-,, bkCK. where .1 = (:ij: at A. J=l. m and

K = (bk: bC.AA. k=O .... m}. Clearly ,1 satisfies Al and K satisfies A.
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Suppose J also satisfies A2. Then the preceding point processes are

independent Poisson processes with respective rates {Waj Aaj bk} , and the
'I

past of these processes is independent of' (X J)

The preceding results are for networks in which only one unit can

move at a time. In networks with simultaneous movement of units, the

flows among the nodes my be compound Poisson processes. Kook (198) has

characterized such flows using Theorem 3.2.

5. Further Generalizations

The results in Sections 2 and 3 readily extend to more general

processes. We discussed some of these situations in the remarks above.

Here are some more generalizations.
'p"

Markov Processes With General State Spaces. Suppose that X = X t : t FR} is

a pure jump Markov process with a general state space E and associated

a-field 9. and its transition kernel is K(x.B), x-tF. Bg,. That is. the

exponential sojourn time in state x has parameter K(x,E) and the

probability of X jumping from x into B is K(xB)/K(x.FE). Then the

results in Sections 2 and 3 hold with the sums replaced by integrals.

For example, a is the Radon-Nikodym derivative

a (x) = f tr(dy)K(y.dx)f(y.x)/vr(dx).

Functionals Involving Sojourn Times. Suppose X is a Markov process as in

.Sect ion 2 and

N(A) - -f(X .X ,W )
V t tA

where Wt is the waiting time in state Xt_ and f:i x I x R - (0, 1}. Then

the results of Section 2 hold for this N with o, Y defined by
0.

111011 R.II r II F I rI
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a(x) f 0 q(x.y)f(x'y.w)F (dw)
*x Y

a (x) = irrx)o ): r(y)q(yx)f(y.xw)F (dw)
a r\) 0y y

where F (w) = I - exp(-wq(x)). Similarly, the results of Section 3 hold
x

for M as a functional of W as well as of X ,X . One can generalize~t t t-

further by assuming that X is a semi-Markov process zud replacing F by a
x

general sojourn time distribution F
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